BOE Sidewalk Assessment System

 Team Members: Tiffany Hung | Arturo Gonzalez | Ernesto Cabrera | Jhonathan Hwang | Zhiwen Liu | Brian Mojica | Jose Portillo Valencia | Amelia Santamaria Zapata | Fernando Serrano Perez | Carlos Villa Rodela
Faculty Advisor: Dr. Lim | Cao Tran (JPL senior engineer)
(Engineering of Los Angeles) Liaison: Ted Allen | Bertram Mokelebust | Alisa Blake | Chris Tsangaris | Jonathan De Leon | Miguel Grajeda | Irvin Nguyen Department of Computer Science
College of Engineering, Computer Science, and Technology California State University, Los Angeles

Background

Sidewalks are essential for providing access to pedestrians, especially those with disabilities. The deficiencies of sidewalks lead to potential hazards and reduces wheelchair accessibility. A Rover that can measure sidewalk conditions to identify hazardous areas is being developed to solve this problem.

Objectives

To improve the Rover by implementing a collision avoidance mechanism for the safety of pedestrians. To train and implement a machine learning algorithm that can work with the data collected by the Rover to calculate vertical displacement of sidewalks that may need repair.

Ubiquity Magni Silver (Rover)

Workflow Architecture

00

CONCLUSIONS & FUTURE WORK

A DESCRIPTION OF THE PARTY OF T

Implemented a collision avoidance algorithm that detects objects within a safe distance and forces Rover to slow down and eventually stop. In the future, we seek to improve this functionality through the use of EZ Map. We implemented and trained a machine learning algorithm that can process Rover data to calculate vertical displacement. In the future, we can improve the model's accuracy with further training and also implement horizontal displacement.